Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 437
Filtrar
1.
Virol J ; 21(1): 49, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395934

RESUMO

BACKGROUND: Viruses within the γ-herpesviruses subfamily include the causative agents of Malignant Catarrhal Fever (MCF) in several species of the order Artiodactyla. MCF is a usually fatal lymphoproliferative disease affecting non-adapted host species. In adapted host species these viruses become latent and recrudesce and transmit during times of stress or immunosuppression. The undetected presence of MCF-causing viruses (MCFVs) is a risk to non-adapted hosts, especially within non-sympatric zoological collections. This study investigated the presence of MCFVs in six different zoological collections in the UK, to evaluate the presence of subclinical/latent MCFVs in carrier animals. METHODS: One-hundred and thirty eight samples belonging to 54 different species of Artiodactyla were tested by Consensus Pan-herpes PCR. The positive samples were sequenced and subjected to phylogenetic analyses to understand their own evolutionary relationships and those with their hosts. RESULTS: Twenty-five samples from 18 different species tested positive. All viruses but one clustered in the γ-herpesvirus family and within the Macavirus as well as the non-Macavirus groups (caprinae and alcelaphinae/hippotraginae clusters, respectively). A strong association between virus and host species was evident in the Macavirus group and clustering within the caprinae group indicated potential pathogenicity. CONCLUSION: This study shows the presence of pathogenic and non-pathogenic MCFVs, as well as other γ-herpesviruses, in Artiodactyla species of conservation importance and allowed the identification of new herpesviruses in some non-adapted species.


Assuntos
Artiodáctilos , Herpesviridae , Febre Catarral Maligna , Animais , Bovinos , Filogenia , Herpesviridae/genética , Ruminantes , Febre Catarral Maligna/patologia
2.
J Vet Diagn Invest ; 36(2): 243-247, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38212885

RESUMO

Malignant catarrhal fever (MCF), caused by ovine herpesvirus 2 (OvHV2; Orthoherpesviridae, Macavirus ovinegamma2), has sheep as natural hosts. OvHV2 is an important macavirus globally that induces fatal disease in dead-end hosts. Goats, which can be infected subclinically with OvHV2, rarely develop MCF. A 28-wk-old female goat was presented with fever and multifocal crusty skin lesions. Histologic examination of a skin biopsy suggested erythema multiforme (EM), with pyoderma and dermal vasculitis. The doe was euthanized and subjected to postmortem and histologic examination. MCF was suspected and PCR assays for macaviruses were performed, followed by immunohistochemistry (IHC) for OvHV2 latency-associated nuclear antigen (oLANA), RNA in situ hybridization for Ov2.5 mRNA, and IHC to characterize infiltrating leukocytes. The main postmortem finding was severe multifocal ulcerative dermatitis with macrophage- and T cell-mediated arteritis. The latter was also detected in kidney, spleen, heart, and intestinal wall. The PCR assay detected high loads of OvHV2 in tissues. OvHV2 oLANA and Ov2.5 mRNA were expressed within the lesions in leukocytes, endothelial cells, fibroblasts, and/or keratinocytes. Our case confirms that MCF can initially manifest clinically as a skin disease in goats and as EM with confirmed viral etiology.


Assuntos
Doenças dos Bovinos , Eritema Multiforme , Gammaherpesvirinae , Doenças das Cabras , Febre Catarral Maligna , Doenças dos Ovinos , Feminino , Bovinos , Animais , Ovinos , Febre Catarral Maligna/diagnóstico , Cabras , Células Endoteliais/patologia , Eritema Multiforme/diagnóstico , Eritema Multiforme/veterinária , RNA Mensageiro , Gammaherpesvirinae/genética , Doenças das Cabras/diagnóstico , Doenças dos Ovinos/patologia
3.
Virology ; 590: 109958, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38071929

RESUMO

Malignant catarrhal fever is a lymphoproliferative disease of cattle and other ungulates that is caused by genetically and antigenically related gamma herpesviruses of the genus Macavirus. Infection of the natural host species is efficient and asymptomatic but spread to susceptible hosts is often fatal with clinical signs including fever, depression, nasal and ocular discharge. There is no recognised treatment for MCF but a vaccine for one MCF virus, alcelaphine herpesvirus 1 (AlHV-1), has been described. In this paper we describe the inhibition of AlHV-1 replication and propagation by the anthelminthic drug ivermectin. Concentrations of 10 µM or greater led to significant reductions in both copy number and viable titre of virus tested in culture medium, with little replication detected at over 20 µM ivermectin. In the absence of alternative treatments, further testing of ivermectin as a candidate antiviral treatment for MCF may therefore be justified.


Assuntos
Gammaherpesvirinae , Herpesviridae , Febre Catarral Maligna , Bovinos , Animais , Febre Catarral Maligna/diagnóstico , Febre Catarral Maligna/patologia , Ivermectina/farmacologia
4.
Trop Anim Health Prod ; 55(5): 344, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37782428

RESUMO

Malignant catarrhal fever (MCF) is a viral infectious disease caused by specific members of the Macavirus genus that are referred to as the MCF virus (MCFV) complex group. This study determined the prevalence of MCFV-associated infections in cattle within the mesoregions of the state of Paraná, Southern Brazil, by analyzing the histopathologic patterns of renal lesions in association with positive immunoreactivity to intralesional antigens of MCFV. Intracytoplasmic MCFV antigens were identified in 41.7% (48/115) of the kidneys of cattle evaluated. Lymphocytic interstitial nephritis, vascular degeneration, and ballooning degeneration of the renal tubules were the principal histopathological findings associated with positive immunoreactivity to MCFV. The results indicate that MCFV infections are endemic within the state of Paraná and suggest that the kidney can be of diagnostic value in suspected cases of MCF-associated infections in cattle. Furthermore, the utilization of an in situ diagnostic technique resulted in the detection of a greater number of cases of infections by MCFV than previously identified using other diagnostic methods. Additionally, degenerative vascular lesions of the kidney should be considered during the establishment of a histological diagnosis of MCFV-induced infections in cattle in the absence of fibrinoid change or necrotizing vasculitis.


Assuntos
Doenças dos Bovinos , Gammaherpesvirinae , Febre Catarral Maligna , Bovinos , Animais , Febre Catarral Maligna/epidemiologia , Brasil/epidemiologia , Estudos Retrospectivos , Rim , Doenças dos Bovinos/epidemiologia
5.
PLoS One ; 18(9): e0290309, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37656696

RESUMO

Ovine gammaherpesvirus 2 (OvHV-2), a member of the genus Macavirus, causes sheep-associated malignant catarrhal fever (SA-MCF), a fatal lymphoproliferative disease affecting a wide variety of ungulates in addition to horses. This study described an outbreak of SA-MCF in Mexico and the identification of the OvHV-2 virus in primary rabbit testis cultures through the generation of intranuclear inclusion bodies, syncytia, immunofluorescence (IF), immunocytochemistry (ICC), immunohistochemistry (IHC), endpoint polymerase chain reaction (PCR), and partial sequencing of the ORF75 gene. The animals involved in this outbreak showed mucogingival ulcers in the vestibule of the mouth and tongue, hypersalivation, corneal opacity, reduced food consumption, and weight loss of variable severity. These clinical signs and the histopathological findings suggested the diagnosis of SA-MCF. Buffy coat fractions from the anticoagulated blood samples of ill animals were collected and analyzed by PCR. Positive buffy coats were used to inoculate the primary cell cultures of rabbit testis to identify the virus. Small clusters of refractile cytomegalic cells, characteristic of viral cytopathic effects, were observed between 48 and 72 h post-infection. Furthermore, intranuclear acidophilic inclusion bodies (IBs) were identified in the inoculated primary culture cells, and the cytoplasm showed immunoreactivity with hyperimmune rabbit serum against OvHV-2. Moreover, in the liver histological sections from sick deer, immunoreactive juxtanuclear IBs were identified with the same rabbit hyperimmune serum. The obtained sequences were aligned with the OvHV-2 sequences reported in GenBank and revealed a nucleotide identity higher than 98%. Based on the evidence provided in this study, we conclude that the outbreak of SA-MCF in the municipality of Tequisquiapan in the state of Queretaro, Mexico, was caused by OvHV-2. This is the second study reporting that horses are susceptible to OvHV-2 infection and can develop SA-MCF. We identified for the first time in Mexico, the presence of OvHV-2 in buffy coats from horses and Artiodactyla.


Assuntos
Artiodáctilos , Cervos , Gammaherpesvirinae , Febre Catarral Maligna , Animais , Bovinos , Masculino , Coelhos , Surtos de Doenças/veterinária , Gammaherpesvirinae/genética , Cavalos , Febre Catarral Maligna/epidemiologia , México/epidemiologia , Ovinos
6.
Vet Pathol ; 60(6): 876-887, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37515544

RESUMO

Granulomatous mural folliculitis (GMF) is an uncommon reaction pattern occasionally observed in nonadapted ruminant hosts infected with malignant catarrhal fever viruses. This report characterizes GMF and concurrent cutaneous lesions in 16 goats with crusting dermatitis using histochemistry including hematoxylin and eosin, periodic acid-Schiff, and Grocott's methenamine silver, and immunohistochemistry for CD3, CD20, ionized calcium binding adaptor molecule 1, and cytokeratin AE1/3. Infiltrates in all 16 GMF cases consisted of macrophages and fewer T lymphocytes, and variably included eosinophils, multinucleated histiocytic giant cells, and/or neutrophils. Formalin-fixed paraffin-embedded skin and fresh skin samples from caprine GMF cases were tested using pan-herpesvirus nested conventional polymerase chain reaction (PCR) and partial sequencing, ovine herpesvirus-2 (OvHV-2) real-time PCR, and OvHV-2 colorimetric in situ hybridization (ISH). Five of 16 goats with GMF (31%) were PCR positive for malignant catarrhal fever viruses, including caprine herpesvirus 3 in 1 goat and OvHV-2 in 4 goats. Three goats also had positive intranuclear OvHV-2 hybridization signal in follicular keratinocytes, among other cell types, localized to areas of GMF. Herpesviruses were not detected in the formalin-fixed paraffin-embedded skin of 9 goats without GMF. This case series describes relatively frequent detections of malignant catarrhal fever viruses in the skin of goats with GMF, including the first report of caprine herpesvirus 3, and localizes OvHV-2 infected follicular keratinocytes within areas of GMF.


Assuntos
Doenças dos Bovinos , Foliculite , Gammaherpesvirinae , Herpesviridae , Febre Catarral Maligna , Doenças dos Ovinos , Bovinos , Animais , Ovinos , Cabras , Fator de Maturação da Glia , Gammaherpesvirinae/genética , Ruminantes , Foliculite/veterinária , Foliculite/patologia , Hibridização In Situ/veterinária , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Formaldeído
7.
Viruses ; 15(3)2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36992358

RESUMO

Upon the sudden death of two captive roan antelopes (Hippotragus equinus) that had suffered from clinical signs reminiscent of malignant catarrhal fever (MCF) in a German zoo, next generation sequencing of organ samples provided evidence of the presence of a novel gammaherpesvirus species. It shares 82.40% nucleotide identity with its so far closest relative Alcelaphine herpesvirus 1 (AlHV-1) at the polymerase gene level. The main histopathological finding consisted of lympho-histiocytic vasculitis of the pituitary rete mirabile. The MCF-like clinical presentation and pathology, combined with the detection of a nucleotide sequence related to that of AlHV-1, indicates a spillover event of a novel member of the genus Macavirus of the Gammaherpesvirinae, probably from a contact species within the zoo. We propose the name Alcelaphine herpesvirus 3 (AlHV-3) for this newly identified virus.


Assuntos
Antílopes , Gammaherpesvirinae , Febre Catarral Maligna , Bovinos , Animais , Febre Catarral Maligna/genética , Febre Catarral Maligna/patologia , Gammaherpesvirinae/genética , Sequência de Bases , Sequenciamento de Nucleotídeos em Larga Escala
8.
Viruses ; 15(2)2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36851740

RESUMO

Gammaherpesviruses (γHVs) include viruses that can induce lymphoproliferative diseases and tumors. These viruses can persist in the long term in the absence of any pathological manifestation in their natural host. Alcelaphine gammaherpesvirus 1 (AlHV-1) belongs to the genus Macavirus and asymptomatically infects its natural host, the wildebeest (Connochaetes spp.). However, when transmitted to several susceptible species belonging to the order Artiodactyla, AlHV-1 is responsible for the induction of a lethal lymphoproliferative disease, named wildebeest-derived malignant catarrhal fever (WD-MCF). Understanding the pathogenic mechanisms responsible for the induction of WD-MCF is important to better control the risks of transmission and disease development in susceptible species. The aim of this review is to synthesize the current knowledge on WD-MCF with a particular focus on the mechanisms by which AlHV-1 induces the disease. We discuss the potential mechanisms of pathogenesis from viral entry into the host to the maintenance of viral genomes in infected CD8+ T lymphocytes, and we present current hypotheses to explain how AlHV-1 infection induces a peripheral T cell lymphoma-like disease.


Assuntos
Antílopes , Gammaherpesvirinae , Linfoma de Células T Periférico , Febre Catarral Maligna , Bovinos , Animais
9.
Viruses ; 14(12)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36560701

RESUMO

The family Herpesviridae includes viruses identified in mammals, birds and reptiles. All herpesviruses share a similar structure, consisting of a large linear double-stranded DNA genome surrounded by a proteic icosahedral capsid further contained within a lipidic bilayer envelope. The continuous rise of genetic variability and the evolutionary selective pressure underlie the appearance and consolidation of novel viral strains. This applies also to several gamma(γ)-herpesviruses, whose role as primary pathogen has been often neglected and, among these to newly emerged viruses or virus variants responsible for the development of Malignant Catarrhal Fever (MCF) or MCF-like disease. The identification of γ-herpesviruses adapted to new zoological hosts requires specific molecular tools for detection and characterization. These viruses can cause MCF in livestock and wild animals, a disease generally sporadic but with serious welfare implications and which, in many cases, leads to death within a few days from the appearance of the clinical signs. In the absence of a vaccine, the first step to improve disease control is based on the improvement of molecular tools to identify and characterize these viruses, their phylogenetic relationships and evolutionary interaction with the host species. A Panherpes PCR-specific test, based on the conserved DNA polymerase gene, employing consensus/degenerate and deoxyinosine-substituted primers followed by sequencing, is still the preferred diagnostic test to confirm and characterize herpesviral infections. The drawback of this test is the amplification of a relatively short sequence, which makes phylogenetic analysis less stringent. Based on these diagnostic requirements, and with a specific focus on γ-herpesviruses, the present review aims to critically analyze the currently available methods to identify and characterize novel MCFV strains, to highlight advantages and drawbacks and to identify the gaps to be filled in order to address research priorities. Possible approaches for improving or further developing these molecular tools are also suggested.


Assuntos
Artiodáctilos , Herpesviridae , Febre Catarral Maligna , Bovinos , Animais , Febre Catarral Maligna/diagnóstico , Filogenia , Ruminantes , Herpesviridae/genética
10.
J Vet Diagn Invest ; 34(5): 905-908, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35861226

RESUMO

Malignant catarrhal fever (MCF) is a severe, systemic, lymphoproliferative disease affecting domestic ruminants, caused by a group of MCF viruses in the genus Macavirus. Infection of cattle and bison with ovine herpesvirus 2 (OvHV2) is economically significant in North America. Sheep are the reservoir host of the virus, and only rarely manifest disease. Cattle and bison, however, frequently have lymphoproliferation, mucosal ulceration, and systemic vasculitis. OvHV2-induced MCF in cattle and bison is often fatal, with clinical recovery reported only rarely. Chronic cases are uncommon, but vascular changes of variable severity and ocular lesions have been described. Here we present a case of chronic MCF in a cow with proliferative arteriopathy, systemic vasculitis, and OvHV2-associated hypophysitis. We demonstrated OvHV2 nucleic acid in affected tissues with in situ hybridization.


Assuntos
Bison , Doenças dos Bovinos , Gammaherpesvirinae , Hipofisite , Febre Catarral Maligna , Vasculite Sistêmica , Animais , Bovinos , Gammaherpesvirinae/genética , Hipofisite/veterinária , Ruminantes , Ovinos , Vasculite Sistêmica/veterinária
11.
Braz J Microbiol ; 53(1): 433-446, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34780031

RESUMO

Sheep-associated malignant catarrhal fever (SA-MCF) is a severe, frequently fatal, lymphoproliferative disease that affects a wide variety of ruminants and is caused by ovine gammaherpesvirus 2 (OvHV-2), a member of the MCF virus (MCFV) complex. The typical clinical manifestations of SA-MCF are well known and easily recognized by veterinarians, resulting in clinical diagnosis of MCF when characteristic clinical signs are present. This article describes the findings observed in cattle infected with OvHV-2 but without typical clinical manifestations of SA-MCF. Three calves with episodes of diarrhea before death and a yearling that died suddenly were investigated. Gross alterations were not suggestive of SA-MCF. Histopathology revealed a combination of proliferating vascular lesions (PVLs) and necrotizing vasculitis in three animals (two calves and the yearling); with PVLs being identified only at the carotid rete mirabile of two calves infected with OvHV-2. Additional significant histopathologic lesions included atrophic enteritis, portal lymphocytic hepatitis, interstitial pneumonia, suppurative bacterial bronchopneumonia, and pulmonary hemorrhage. An immunohistochemical assay designed to identify only antigens of MCFV revealed, positive, intralesional, intracytoplasmic immunoreactivity within epithelial cells of multiple tissues of all animals with PVLs. PCR assays amplified OvHV-2 DNA from multiple tissues of the animals that contained MCFV proteins, confirming the MCFV identified as OvHV-2. Additionally, bovine coronavirus (BCoV) nucleic acids were amplified from tissues of all animals, including the animal not infected by OvHV-2. Collectively, these findings confirmed the participation of OvHV-2 in the development of the disease patterns observed in these animals that were concomitantly infected by BCoV and provide additional confirmation that cattle can be subclinically infected with OvHV-2. Consequently, the real occurrence of OvHV-2-related disease may be more elevated than reported, since asymptomatic or subclinically infected animals are not likely to be investigated for OvHV-2. Furthermore, PVLs should be included as possible histologic indicators of OvHV-2-related diseases in ruminants.


Assuntos
Coronavirus Bovino , Gammaherpesvirinae , Febre Catarral Maligna , Animais , Bovinos , Gammaherpesvirinae/genética , Febre Catarral Maligna/patologia , Ruminantes , Ovinos
12.
J Virol Methods ; 299: 114329, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34653445

RESUMO

The minor capsid protein of ovine herpesvirus 2, identified as a potential antigen for serological testing, was over-expressed and purified to allow its assessment in ELISA. The corresponding gene sequence (OvHV-2 orf65, Ov65) was modified to incorporate epitope tags and internal restriction enzyme sites in an E. coli codon-optimised version of the gene. This codon-optimised gene was then subject to internal deletions to identify regions of the protein that could be removed while maintaining protein solubility and antigenicity. It was found that a derivative with deletion of the conserved 5'-end of the gene (Ov65delB) expressed a polypeptide that was soluble when over-expressed in bacteria and was detected by OvHV-2 specific sera. Proteomic analysis of the affinity purified Ov65delB showed that it contained multiple predicted Ov65 tryptic peptides but also showed contamination by co-purifying E. coli proteins. An indirect ELISA, based on this affinity-purified OV65delB, was optimised for use with sheep and cattle samples and cut-off values were established based on known negative serum samples. Analysis of groups of samples that were either presumed infected (UK sheep) or tested OvHV-2 positive or negative by PCR (cattle MCF diagnostic samples) showed that the assay had 95 % sensitivity and 96 % specificity for sheep serum; and 80 % sensitivity and 95 % specificity for cattle serum. The lower sensitivity with cattle samples appeared to be due to a lack of serological response in some MCF-affected cattle. This recombinant antigen therefore shows promise as the basis of an inexpensive, simple and reliable test that can be used to detect OvHV-2-specific antibody responses in both MCF-affected animals and in OvHV-2 reservoir hosts.


Assuntos
Febre Catarral Maligna , Doenças dos Ovinos , Animais , Bovinos , Ensaio de Imunoadsorção Enzimática/veterinária , Escherichia coli/genética , Gammaherpesvirinae , Febre Catarral Maligna/diagnóstico , Proteômica , Ovinos , Doenças dos Ovinos/diagnóstico
13.
Microb Pathog ; 161(Pt A): 105220, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34606919

RESUMO

Sheep Associated-Malignant Catarrhal Fever (SA-MCF) is severe, frequently lethal, lymphoproliferative disease predominantly of ruminants, that is caused by ovine gammaherpesvirus-2 (OvHV-2), a member of the MCF virus (MCFV) complex. However, SA-MCF in sheep is a rare entity with few demonstrations of natural diseases worldwide. This report documents the clinical, radiographical, pathological, immunohistochemical, and molecular findings of SA-MCF in a sheep. A 4-year-old, female, mixed-breed sheep with progressive emaciation for at least one month was humanely euthanized due to poor prognosis. Clinically, the animal had tachypnea, ruminal hypomotility, productive coughing with bilateral muffling sounds during pulmonary auscultation. Radiographical evaluation revealed alveolar opacity of the cranioventral pulmonary region. Grossly, there were distinct rib impressions on the pleural surface of the lungs, suggestive of interstitial pneumonia. Histopathologic evaluation of the lungs revealed several disease patterns including 1) chronic interstitial pneumonia with vasculitis and proliferating vascular lesions, and thrombosis; 2) pulmonary abscesses associated with embolic dissemination of Corynebacterium pseudotuberculosis from superficial lymph node due to caseous lymphadenitis, CLA; 3) granulomatous pneumonia associated with pulmonary nematodes; and 4) chronic pleuritis, probably due to caseous lymphadenitis. Additional significant histologic findings included widespread lymphocytic vasculitis and proliferating vascular lesions in multiple tissues, atrophic enteritis, segmental degeneration of myocardial fibers with lymphocytic pericarditis, lymphocytic interstitial nephritis, and non-suppurative encephalitis. An immunohistochemistry (IHC) assay, based on the monoclonal antibody 15A (MAb-15A), that is specific to all MCFV known to cause MCF, revealed positive, intracytoplasmic, intralesional immunoreactivity, predominantly within bronchial and bronchiolar epithelial cells of the lungs and cryptal epithelial cells of the small intestine, followed by the renal tubular epithelium, cardiomyocytes, and with patchy immunolabelling within neurons of the cerebral cortex. Molecular testing done to detect a wide range of bacterial and viral agents of ruminant diseases, only amplified OvHV-2 DNA from fresh tissue fragments of the lungs, kidney, liver, spleen, and cerebrum. Direct sequencing confirmed that the PCR amplicon derived from the pulmonary fragments had 99.2-99.7% nucleotide sequence identity with OvHV-2 reference strains and strains of OvHV-2 from Brazil. The clinical, radiographical, gross, histopathologic, IHC, and molecular findings in the lungs are consistent with chronic interstitial pneumonia associated with infection by OvHV-2. Furthermore, the non-detection of other viral agents associated with pulmonary diseases in ruminants suggest that OvHV-2 was directly associated with the development of chronic pneumonia in this sheep. Additionally, the dental alterations, CLA, and the pulmonary nematode may have contributed towards the reduced immunological statue of the animal and facilitated the occurrence of SA-MCF. These findings may indicate that OvHV-2 may be a major participant in the pathogenesis of pulmonary disease of sheep under special conditions. Moreover, the proliferating vascular lesions identified in multiple tissues are additional evidence of chronic manifestations of OvHV-2 infections as described in chronic SA-MCF of cattle, while the widespread vasculitis is consistent with SA-MCF. Additionally, the IHC findings using the MAb-15A confirmed that this diagnostic approach is efficient to identify intralesional antigens of OvHV-2.


Assuntos
Doenças Pulmonares Intersticiais , Febre Catarral Maligna , Doenças dos Ovinos , Animais , Bovinos , Feminino , Humanos , Imuno-Histoquímica , Doenças Pulmonares Intersticiais/diagnóstico , Doenças Pulmonares Intersticiais/veterinária , Ruminantes , Ovinos , Doenças dos Ovinos/diagnóstico
14.
Vet Pathol ; 58(2): 332-345, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33280543

RESUMO

Malignant catarrhal fever (MCF) is a sporadic, generally fatal disease caused by gammaherpesviruses in susceptible dead-end hosts. A key pathological process is systemic vasculitis in which productively infected cytotoxic T cells play a major role. Nonetheless, the pathogenesis of MCF vasculitis is not yet clear. We hypothesized that it develops due to an interaction between virus-infected cells and immune cells, and we undertook a retrospective in situ study on the rete mirabile arteries of confirmed ovine gammaherpesvirus-2 (OvHV-2)-associated MCF cases in cattle, buffalo, and bison. Our results suggest that the arteritis develops from an adventitial infiltration of inflammatory cells from the vasa vasorum, and recruitment of leukocytes from the arterial lumen that leads to a superimposed infiltration of the intima and media that can result in chronic changes including neointimal proliferation. We found macrophages and T cells to be the dominant infiltrating cells, and both could proliferate locally. Using RNA in situ hybridization and immunohistology, we showed that the process is accompanied by widespread viral infection, not only in infiltrating leukocytes but also in vascular endothelial cells, medial smooth muscle cells, and adventitial fibroblasts. Our results suggest that OvHV-2-infected T cells, monocytes, and locally proliferating macrophages contribute to the vasculitis in MCF. The initial trigger or insult that leads to leukocyte recruitment and activation is not yet known, but there is evidence that latently infected, activated endothelial cells play a role in this. Activated macrophages might then release the necessary pro-inflammatory mediators and, eventually, induce the characteristic vascular changes.


Assuntos
Doenças dos Bovinos , Febre Catarral Maligna , Doenças dos Ovinos , Vasculite , Animais , Bovinos , Células Endoteliais , Macrófagos , Estudos Retrospectivos , Ovinos , Vasculite/veterinária
15.
Vet Pathol ; 58(2): 384-395, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33205708

RESUMO

Cross-species infection with ovine herpesvirus 2 (OvHV-2) in cattle causes malignant catarrhal fever (MCF). MCF may involve the central nervous system (CNS) with necrotizing arteritis and/or vasculitis described to be unique to MCF and discriminatory compared to other viral CNS infections. However, a systematic histopathological characterization of the neural form of MCF in cattle is lacking. We examined medulla oblongata (n = 9) or the entire brain (n = 9) of 18 cattle in which OvHV-2 was identified by quantitative polymerase chain reaction (qPCR), in order to pinpoint potential variations in neuropathology. In 2/18 animals (11%) no lesions were identified, while 16/18 cattle (89%) had brain lesions of varying severity. Presence and quantities of OvHV-2 nucleic acid were determined by in situ hybridization and qPCR, respectively, and were related to the severity of lesions. Fifteen of 18 animals (83%) showed vasculitis, which was mainly of the lymphohistiocytic type, while pathognomonic necrotizing arteritis was only rarely present. Neuroparenchymal lesions included gliosis and/or neuronal changes in 7/16 brains with lesions (44%). The number of CD3+ lymphocytes was highest in animals with simultaneous vascular and neuroparenchymal lesions and high viral genome load. In one animal, OvHV-2 was exclusively observed in CD3+ lymphocytes but not in neurons or microglia. In conclusion, the neuropathological phenotype of bovine MCF in the brain was variable. In some cases, lesions mimicked neurotropic viral encephalitis, while pathognomonic necrotizing arteritis was not a consistent feature of neural MCF. Therefore, molecular detection of OvHV-2 is warranted in the presence of nonsuppurative encephalitis and in the absence of necrotizing arteritis.


Assuntos
Doenças dos Bovinos , Gammaherpesvirinae , Febre Catarral Maligna , Poliarterite Nodosa , Doenças dos Ovinos , Animais , Bovinos , Fenótipo , Poliarterite Nodosa/veterinária , Ovinos
16.
Onderstepoort J Vet Res ; 87(1): e1-e4, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33179949

RESUMO

In this study, positive blood and organ samples were obtained from different mixed herds of sheep and cattle against ovine herpesvirus 2 (OvHV-2) infection. Target-positive DNA was sequenced and compared with worldwide distributed OvHV-2 sequences. Tegument gene (422 base pairs) and glycoprotein B (gB) gene (2800 base pairs) amplicons of OvHV-2 genome were used for understanding of epidemiology of malignant catarrhal fever (MCF) infection in Turkey. The results of nucleotide sequencing of polymerase chain reaction (PCR) products indicated presence of sheep-associated form for MCF infection in Turkey. Although the obtained sequences were genetically different from each other, it was found that genetic variations were limited.


Assuntos
Gammaherpesvirinae/isolamento & purificação , Febre Catarral Maligna/diagnóstico , Doenças dos Ovinos/diagnóstico , Proteínas Virais/genética , Animais , Bovinos , Feminino , Gammaherpesvirinae/genética , Febre Catarral Maligna/virologia , Análise de Sequência de DNA/veterinária , Ovinos , Doenças dos Ovinos/virologia , Carneiro Doméstico , Turquia
17.
Braz J Microbiol ; 51(3): 1405-1432, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32542424

RESUMO

Sheep-associated malignant catarrhal fever (SA-MCF), the form of MCF that occurs in Brazil, is a severe, frequently fatal, infectious disease caused by ovine gammaherpesvirus-2 (OvHV-2), in which sheep are the asymptomatic hosts and cattle and other cloven-hoofed animals are the accidental hosts. This review provides a critical analysis of the historical, epidemiological aspects and the estimated economic impacts associated with SA-MCF in Brazil. Moreover, the clinical manifestations and pathological lesions associated with SA-MCF in cattle are reviewed and discussed and the phylogenetic distribution of OvHV-2 in Brazil is presented. OvHV-2 is the only MCF virus identified in animals from Brazil. It is recommended that a histopathologic diagnosis of SA-MCF be based on all aspects of vascular disease in the affected animal and not only lymphocytic/necrotizing vasculitis and/or fibrinoid change. Conformation of the intralesional participation of OvHV-2 in these alterations can be achieved by immunohistochemistry and/or in situ hybridization assays. Additionally, it is proposed that OvHV-2 should be considered as a possible infectious disease agent associated with the development of bovine respiratory disease in cattle. Furthermore, the possible role of the small intestine in the dissemination of OvHV-2 is discussed.


Assuntos
Gammaherpesvirinae/isolamento & purificação , Febre Catarral Maligna/virologia , Doenças dos Ovinos/virologia , Animais , Brasil/epidemiologia , Gammaherpesvirinae/classificação , Gammaherpesvirinae/genética , Gammaherpesvirinae/fisiologia , Febre Catarral Maligna/epidemiologia , Febre Catarral Maligna/patologia , Filogenia , Ovinos , Doenças dos Ovinos/epidemiologia , Doenças dos Ovinos/patologia
18.
Vet Pathol ; 57(4): 577-581, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32406327

RESUMO

Eight duikers, representing 3 different species cohoused in a single zoological collection, died in a 10-month period. Black, red-flanked, and yellow-backed duikers were affected, appearing clinically with a combination of anorexia, diarrhea, ataxia, tremors, and/or stupor, followed by death within 72 hours of onset of clinical signs. Consistent gross findings were pulmonary ecchymoses (8/8), generalized lymphadenomegaly (6/8), ascites (5/8), and pleural effusion (4/8). Dense lymphocyte infiltrates and arteritis affected numerous tissues in most animals. Ibex-associated malignant catarrhal fever (MCF) viral DNA was detected in all cases by polymerase chain reaction and in situ hybridization. Identical ibex-MCF virus sequence was detected in spleen of a clinically healthy ibex (Capra ibex) housed in a separate enclosure 35 meters away from the duikers.


Assuntos
Antílopes/virologia , Infecções por Herpesviridae/veterinária , Febre Catarral Maligna/patologia , Animais , Animais Selvagens/virologia , Animais de Zoológico/virologia , California , Bovinos , Doenças dos Bovinos/patologia , Doenças dos Bovinos/virologia , DNA Viral/genética , Gammaherpesvirinae/genética , Gammaherpesvirinae/isolamento & purificação , Cabras/virologia , Herpesviridae/genética , Herpesviridae/isolamento & purificação , Infecções por Herpesviridae/patologia , Infecções por Herpesviridae/transmissão , Hibridização In Situ/veterinária , Rim/patologia , Pulmão/patologia , Masculino , Febre Catarral Maligna/transmissão , Febre Catarral Maligna/virologia , Reação em Cadeia da Polimerase/veterinária , Ruminantes/virologia , Testículo/patologia , Bexiga Urinária/patologia
19.
PLoS Pathog ; 16(3): e1008405, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32176737

RESUMO

Alcelaphine herpesvirus 1 (AlHV-1) is a gammaherpesvirus that is carried asymptomatically by wildebeest. Upon cross-species transmission to other ruminants, including domestic cattle, AlHV-1 induces malignant catarrhal fever (MCF), which is a fatal lymphoproliferative disease resulting from proliferation and uncontrolled activation of latently infected CD8+ T cells. Two laboratory strains of AlHV-1 are used commonly in research: C500, which is pathogenic, and WC11, which has been attenuated by long-term maintenance in cell culture. The published genome sequence of a WC11 seed stock from a German laboratory revealed the deletion of two major regions. The sequence of a WC11 seed stock used in our laboratory also bears these deletions and, in addition, the duplication of an internal sequence in the terminal region. The larger of the two deletions has resulted in the absence of gene A7 and a large portion of gene A8. These genes are positional orthologs of the Epstein-Barr virus genes encoding envelope glycoproteins gp42 and gp350, respectively, which are involved in viral propagation and switching of cell tropism. To investigate the degree to which the absence of A7 and A8 participates in WC11 attenuation, recombinant viruses lacking these individual functions were generated in C500. Using bovine nasal turbinate and embryonic lung cell lines, increased cell-free viral propagation and impaired syncytia formation were observed in the absence of A7, whereas cell-free viral spread was inhibited in the absence of A8. Therefore, A7 appears to be involved in cell-to-cell viral spread, and A8 in viral cell-free propagation. Finally, infection of rabbits with either mutant did not induce the signs of MCF or the expansion of infected CD8+ T cells. These results demonstrate that A7 and A8 are both essential for regulating viral spread and suggest that AlHV-1 requires both genes to efficiently spread in vivo and reach CD8+ T lymphocytes and induce MCF.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Gammaherpesvirinae/imunologia , Genes Virais/imunologia , Febre Catarral Maligna/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Bovinos , Linhagem Celular , Gammaherpesvirinae/genética , Febre Catarral Maligna/genética , Coelhos , Proteínas do Envelope Viral/genética
20.
J Virol ; 94(8)2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32024777

RESUMO

Malignant catarrhal fever (MCF) is a rare but frequently lethal disease of certain cloven-hoofed animals. At least 10 different viruses, all members of the Macavirus genus in the subfamily Gammaherpesvirinae, are known as causative agents of MCF. Among these, ovine herpesvirus 2 (OvHV-2) is the most frequent and economically most important MCF agent. Phenotypically, MCF is characterized by severe lymphocytic arteritis-periarteritis, which leads to the accumulation of activated lymphocytes accompanied by apoptosis and necrosis in a broad range of tissues. However, a viral factor that might be responsible for tissue damage has not yet been identified. We have studied a seemingly intergenic locus on the OvHV-2 genome, which was previously shown to be transcriptionally highly active in MCF-affected tissue. We identified by 5' and 3' rapid amplification of cDNA ends (RACE) a conserved, double-spliced transcript that encoded a 9.9-kDa hydrophobic protein. The newly detected gene, Ov8.25, and its splicing pattern were conserved among OvHV-2 strains of different origins. Upon transient expression of synthetic variants of this gene in various cell types, including bovine lymphocytes, the protein (pOv8.25) was shown to target mitochondria, followed by caspase-dependent apoptosis and necrosis. Notably, a deletion mutant of the same protein lost these abilities. Finally, we detected pOv8.25 in brain-infiltrating lymphocytes of cattle with MCF. Thus, the cell death-causing properties of pOv8.25 in affected cells may be involved in the emergence of typical MCF-associated apoptosis and necrosis. Thus, we have identified a novel OvHV-2 protein, which might contribute to the phenotype of MCF-related lesions.IMPORTANCE Ovine herpesvirus 2 (OvHV-2) circulates among sheep without causing disease. However, upon transmission to cattle, the same virus instigates a frequently lethal disease, malignant catarrhal fever (MCF). While the cause of death and pathogenesis of tissue lesions are still poorly understood, MCF is characterized by the accumulation of lymphocytes in various tissues, associated with vasculitis and cell death. As infectious virus is hardly present in these lesions, the cause of cell death cannot be explained simply by viral replication. The significance of our research is in identifying and characterizing a previously overlooked gene of OvHV-2 (Ov8.25), which is highly expressed in animals with MCF. Its encoded protein targets mitochondria, causing apoptosis and necrosis, thus contributing to an understanding of the source and nature of cell death. As the corresponding genetic locus is also active in the context of MCF due to a different macavirus, we may have detected a common denominator of the disease phenotype.


Assuntos
Apoptose , Gammaherpesvirinae/genética , Gammaherpesvirinae/metabolismo , Mitocôndrias/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Animais , Doenças do Gato/virologia , Gatos , Bovinos , Linhagem Celular , Chlorocebus aethiops , Linfócitos , Febre Catarral Maligna/patologia , Febre Catarral Maligna/virologia , Mitocôndrias/patologia , Necrose/virologia , Alinhamento de Sequência , Ovinos , Doenças dos Ovinos/virologia , Células Vero , Proteínas Virais/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...